Reference Quote

An honest man, armed with all the knowledge available to us now, could only state that in some sense, the origin of life appears at the moment to be almost a miracle, so many are the conditions which would have had to have been satisfied to get it going. But this should not be taken to imply that there are good reasons to believe that it could not have started on the earth by a perfectly reasonable sequence of fairly ordinary chemical reactions. The plain fact is that the time available was too long, the many microenvironments on the earth's surface too diverse, the various chemical possibilities too numerous and our own knowledge and imagination too feeble to allow us to be able to unravel exactly how it might or might not have happened such a long time ago, especially as we have no experimental evidence from that era to check our ideas against. Perhaps in the future we may know enough to make a considered guess, but at the present time we can only say that we cannot decide whether the origin of life on earth was an extremely unlikely event or almost a certainty — or any possibility in between these two extremes.

Similar Quotes

"The problem of the origin of life is, at bottom, a problem in organic chemistry — the chemistry of carbon compounds — but organic chemistry within an unusual framework. Living things, as we shall see, are specified in detail at the level of atoms and molecules, with incredible delicacy and precision. At the beginning it must have been molecules that evolved to form the first living system. Because life started on earth such a long time ago — perhaps as much as four billion years ago — it is very difficult for us to discover what the first living things were like. All living things on earth, without exception, are based on organic chemistry, and such chemicals are usually not stable over very long periods of time at the range of temperatures which exist on the earth's surface. The constant buffeting of thermal motion over hundreds of millions of years eventually disrupts the strong chemical bonds which hold the atoms of an organic molecule firmly together over shorter periods; over our own lifetime, for example. For this reason it is almost impossible to find "molecular fossils" from these very early times."

Go Premium

Support Quotosaurus while enjoying an ad-free experience and premium features.

View Plans
All my life I have wondered about the possibility of life elsewhere. What would it be like? Of what would it be made? All living things on our planet are constructed of organic molecules — complex microscopic architectures in which the carbon atom plays a central role. There was once a time before life, when the Earth was barren and utterly desolate. Our world is now overflowing with life. How did it come about? How, in the absence of life, were carbon-based organic molecules made? How did the first living things arise? How did life evolve to produce beings as elaborate and complex as we, able to explore the mystery of our own origins? And on the countless other planets that may circle other suns, is there life also? Is extraterrestrial life, if it exists, based on the same organic molecules as life on Earth? Do the beings of other worlds look much like life on Earth? Or are they stunningly different — other adaptations to other environments? What else is possible? The nature of life on Earth and the search for life elsewhere are two sides of the same question — the search for who we are. In the great dark between the stars there are clouds of gas and dust and organic matter. Dozens of different kinds of organic molecules have been found there by radio telescopes. The abundance of these molecules suggests that the stuff of life is everywhere. Perhaps the origin and evolution of life is, given enough time, a cosmic inevitability. On some of the billions of planets in the Milky Way Galaxy, life may never arise. On others, it may arise and die out, or never evolve beyond its simplest forms. And on some small fraction of worlds there may develop intelligences and civilizations more advanced than our own. Occasionally someone remarks on what a lucky coincidence it is that the Earth is perfectly suitable for life — moderate temperatures, liquid water, oxygen atmosphere, and so on. But this is, at least in part, a confusion of cause and effect. We earthlings are supremely

¿Por qué el origen de la vida pluricelular se dio en forma de un corto pulso a través de tres faunas radicalmente diferentes , y no como un aumento lento y continuo de complejidad? La historia de la vida es infinitamente fascinante, infinitamente curiosa, pero ciertamente no es la sustancia de nuestros pensamientos y esperanzas usuales.

The origination [creation] of fresh species, could it ever come under our cognizance, would be found to be a natural in contradistinction to a miraculous process.

Nobody can imagine how nothing could turn into something. Nobody can get an inch nearer to it by explaining how something could turn into something else. It is really far more logical to start by saying ‘In the beginning God created heaven and earth’ even if you only mean ‘In the beginning some unthinkable power began some unthinkable process.’ For God is by its nature a name of mystery, and nobody ever supposed that man could imagine how a world was created any more than he could create one. But evolution really is mistaken for explanation. It has the fatal quality of leaving on many minds the impression that they do understand it and everything else; just as many of them live under a sort of illusion that they have read the Origin of Species.

If you imagine the 4,500-bilion-odd years of Earth's history compressed into a normal earthly day, then life begins very early, about 4 A.M., with the rise of the first simple, single-celled organisms, but then advances no further for the next sixteen hours. Not until almost 8:30 in the evening, with the day five-sixths over, has Earth anything to show the universe but a restless skin of microbes. Then, finally, the first sea plants appear, followed twenty minutes later by the first jellyfish and the enigmatic Ediacaran fauna first seen by Reginald Sprigg in Australia. At 9:04 P.M. trilobites swim onto the scene, followed more or less immediately by the shapely creatures of the Burgess Shale. Just before 10 P.M. plants begin to pop up on the land. Soon after, with less than two hours left in the day, the first land creatures follow.

Thanks to ten minutes or so of balmy weather, by 10:24 the Earth is covered in the great carboniferous forests whose residues give us all our coal, and the first winged insects are evident. Dinosaurs plod onto the scene just before 11 P.M. and hold sway for about three-quarters of an hour. At twenty-one minutes to midnight they vanish and the age of mammals begins. Humans emerge one minute and seventeen seconds before midnight. The whole of our recorded history, on this scale, would be no more than a few seconds, a single human lifetime barely an instant. Throughout this greatly speeded-up day continents slide about and bang together at a clip that seems positively reckless. Mountains rise and melt away, ocean basins come and go, ice sheets advance and withdraw. And throughout the whole, about three times every minute, somewhere on the planet there is a flash-bulb pop of light marking the impact of a Manson-sized meteor or one even larger. It's a wonder that anything at all can survive in such a pummeled and unsettled environment. In fact, not many things do for long.

Anybody who looks at living organisms knows perfectly well that they can produce other organisms like themselves. This is their normal function, they wouldn't exist if they didn't do this, and it's not plausible that this is the reason why they abound in the world. In other words, living organisms are very complicated aggregations of elementary parts, and by any reasonable theory of probability or thermodynamics highly improbable. That they should occur in the world at all is a miracle of the first magnitude; the only thing which removes, or mitigates, this miracle is that they reproduce themselves. Therefore, if by any peculiar accident there should ever be one of them, from there on the rules of probability do not apply, and there will be many of them, at least if the milieu is reasonable. But a reasonable milieu is already a thermodynamically much less improbable thing. So, the operations of probability somehow leave a loophole at this point, and it is by the process of self-reproduction that they are pierced.

In this way a process of evolution was started that led to the development of more and more complicated, self-reproducing organisms. The first primitive forms of life consumed various materials, including hydrogen sulfide, and released oxygen. This gradually changed the atmosphere to the composition that it has today, and allowed the development of higher forms of life such as fish, reptiles, mammals, and ultimately the human race.

PREMIUM FEATURE
Advanced Search Filters

Filter search results by source, date, and more with our premium search tools.

Loading...