We absolutely must leave room for doubt or there is no progress and there is no learning. There is no learning without having to pose a question. And a question requires doubt. People search for certainty. But there is no certainty. People are terrified — how can you live and not know? It is not odd at all. You only think you know, as a matter of fact. And most of your actions are based on incomplete knowledge and you really don't know what it is all about, or what the purpose of the world is, or know a great deal of other things. It is possible to live and not know.

Richard Feynman The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman
Also known as: Richard P. Feynman, Richard Phillips Feynman
English
Share Share
Collect this quote
About Richard Feynman

Richard Phillips Feynman (May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is known for the work he did in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, and in particle physics, for which he proposed the parton model. For his contributions to the development of quantum electrodynamics, Feynman received the Nobel Prize in Physics in 1965 jointly with Julian Schwinger and Shin'ichirō Tomonaga. Feynman developed a widely used pictorial representation scheme for the mathematical expressions describing the behavior of subatomic particles, which later became known as Feynman diagrams. During his lifetime, Feynman became one of the best-known scientists in the world.

Biography information from Wikiquote

Unlimited Quote Collections

Organize your favorite quotes without limits. Create themed collections for every occasion with Premium.

Additional quotes by Richard Feynman

Although it is interesting and worth while to study the physical laws simply because they help us to understand and to use nature, one ought to stop every once in a while and think, “What do they really mean?” The meaning of any statement is a subject that has interested and troubled philosophers from time immemorial, and the meaning of physical laws is even more interesting, because it is generally believed that these laws represent some kind of real knowledge. The meaning of knowledge is a deep problem in philosophy, and it is always important to ask, “What does it mean?

We needed a man to repair the machines, to keep them going and everything. And the army was always going to send this fellow they had, but he was always delayed. Now, we always were in a hurry. Everything we did, we tried to do as quickly as possible. In this particular case, we worked out all the numerical steps that the machines were supposed to do — multiply this, and then do this, and subtract that. Then we worked out the program, but we didn’t have any machine to test it on. So we set up this room with girls in it. Each one had a Marchant: one was the multiplier, another was the adder. This one cubed — all she did was cube a number on an index card and send it to the next girl. We went through our cycle this way until we got all the bugs out. It turned out that the speed at which we were able to do it was a hell of a lot faster than the other way, where every single person did all the steps. We got speed with this system that was the predicted speed for the IBM machine. The only difference is that the IBM machines didn’t get tired and could work three shifts. But the girls got tired after a while.